
Hardness results for the Discrete Gauss Transform

Kyriakos Axiotis, Aleksandar Makelov, Chenyang Yuan

1 Introduction

The Discrete Gauss Transform (DGT) is an important computational primitive that arises
in various areas of mathematics and its applications. Given a set of n “source” points A ∈ Rd

that defines a Gaussian kernel and a set of n “query” points B ∈ Rd, it asks to evaluate
the Gaussian kernel at every query point. As an example, in the study of heat equations
and fluid dynamics DGT arises as a discretization of certain families of differential equation
solutions. It is thus widely used in physical simulations and computer modeling. Furthermore,
evaluating and optimizing over Gaussian kernels is important for Machine Learning.

The trivial algorithm for this problem runs in time O(n2d) and comprises of explicitly
evaluating the Gaussian kernel at each query point. Since there are Θ(n2) pairs of points in
total and it takes O(d) time to compute the distance between two points, the bound follows.
This algorithm, however, is somewhat impractical because of the quadratic dependence on
n. In practice, n will correspond to the number of particles or bodies in a physical system,
and it can be expected to be large. On the other hand, the dependence on d might not be
extremely crucial, at least for physics applications, in which the space can be expected to be
intrinsically low-dimensional. (Note, by the way, that this is not the case in most Machine
Learning applications, where one expects the dimension to be very large).

In light of the above, it is natural to ask whether there exists an algorithm with much bet-
ter (ideally linear) dependence on n. This question was answered affirmatively by [GS91], who
proposed the Fast Gauss Transform, an algorithm that computes an additive ε-approximation

to DGT in time O
(
n
(
log 1

ε

)O(d)
)

. While the dependence on n is optimal, the dependence on

d renders the algorithm practical only for applications with very low dimension. As such, a lot
of research has been done on devising various heuristics that seem to work somewhat better in
practice, but do not enjoy theoretically better guarantees (see e.g. [GW13, RYDG05, TW09]).

As we will see in this exposition, the apparent barrier in the improvement of the runtime
of Gauss transform algorithms is inherent, as fast algorithms for this problem would imply
faster algorithms for SAT, refuting the well-known Strong Exponential Time Hypothesis.

2 Preliminaries

We assume familiarity with the basics of computational complexity theory. In this section,
we describe the computational problems relevant to our reductions. Key to our approach

1

is the following classical problem, known as the Orthogonal Vectors Problem (or OV for
short):

Problem 2.1 (Orthogonal Vectors problem (monochromatic version)). Given n vectors
v1, . . . , vn ∈ {0, 1}d, are there i, j such that 〈vi, vj〉 = 0?

More specifically, we will use the bichromatic version of OV, in which we are only con-
cerned with the inner products between vectors from two different sets:

Problem 2.2 (Orthogonal Vectors problem (bichromatic version)). Given two sets of n
vectors A = {v1, . . . , vn} ∈ {0, 1}d and B = {u1, . . . ,un} ∈ {0, 1}d, are there i, j such that
〈vi,uj〉 = 0?

As we will show, the complexity of mono- and bi-chromatic OV is the same, so we will call
both problems just OV. We will also refer to the orthogonal vectors problem for n vectors (or
n vectors in each set for the bichromatic version) in dimension d as OV(n, d) to emphasize
the dependence on parameters. Central to our method is the following standard conjecture
from fine-grained complexity:

Conjecture 2.3 (Orthogonal vector conjecture). For every ε > 0, there is a c ≥ 1 such that
OV cannot be solved in n2−ε time on instances with d = c log n.

In particular, this conjecture is refuted if there exists an algorithm that solves OV in
c log n dimensions, for large enough constant c, in n2−Ω(1) time. As we will be concerned with
various geometric problems where points can have arbitrary coordinates, a stepping stone
in our reductions is the following problem, which is a version of OV over Z (here, we only
need the bichromatic version):

Problem 2.4 (Hopcroft’s problem (bichromatic version)). Given two sets of n vectors A =
{v1, . . . , vn} ∈ Zd and B = {u1, . . . ,un} ∈ Zd, are there i, j such that 〈vi,uj〉 = 0? All input
numbers consist of D bits.

As with OV, we will also call this problem Hop(n, d,D) to emphasize the dependence on
parameters. The next problem we need is the closest pair problem; here, we again only need
the bichromatic variant:

Problem 2.5 (`2 Bichromatic Closest pair). Given two sets of n vectors A = {v1, . . . , vn} ∈
Rd and B = {u1, . . . ,un} ∈ Rd, where each coordinate of each vector has ≤ D bits, find the
pair (i, j) such that the `2 distance between vi and uj is the smallest.

We will call this problem BCP(n, d,D). Finally, we formally define the central problem
that we want to prove hardness of: the approximate Gauss transform. Here, we define it over
Z, as this will be sufficient for proving hardness:

2

Problem 2.6 (Approximate Gauss transform). Given two sets of n vectorsA = {v1, . . . , vn} ∈
Zd and B = {u1, . . . ,un} ∈ Zd, and ε > 0, define

F (u) =
1

n

n∑
i=1

e−‖u−vi‖
2
2

The approximate Gauss transform problem is to compute F̂ (u1), . . . , F̂ (un) such that for all
i = 1, . . . ,n we have ∣∣∣F̂ (ui)− F (ui)

∣∣∣ ≤ ε

We will call this problem GT(n, d, ε).

2.1 Reductions between monochromatic and bichromatic versions
of OV

Here are the promised reductions showing that the mono- and bi-chromatic versions of OV
are equivalent for our purposes.

Lemma 2.7. An instance of monochromatic OV(n, d) reduces to an instance of bichromatic
OV(n, d+ 1) in O(nd) (i.e. linear) time.

Proof. First, search for the zero vector among our input vectors and if it is present, reduce
to a trivially true instance of bichromatic OV.

Otherwise, construct the vectors A = {(v1, 0), . . . , (vn, 0)} and B = {(v1, 1), . . . , (vn, 1)}
in dimension d+ 1 - this is our bichromatic OV instance.

Lemma 2.8. An instance of bichromatic OV(n, d) reduces to an instance of monochromatic
OV(2n, d+ 2) in O(nd) (i.e. linear) time.

Proof. If our vectors are A = {u1, . . . ,un} and B = {v1, . . . , vn}, our monochromatic OV
instance consists of the vectors (ui, 1, 0) and (vi, 0, 1) for 1 ≤ i ≤ n. Note that no two vectors
coming from A and no two vectors coming from B can now have dot product 0, so we’re in
effect searching only over the pairs of vectors in different sets.

3 Previous work

In this section, we summarize the prior work relevant to our main result about the hardness
of the approximate Gauss transform.

3.1 Williams’s reduction from OV to Hopcroft’s problem

We will use the following reduction of Williams from OV to Hop:

Lemma 3.1 (Lemma 1.1 from [Wil18]). Let ` ∈ [1, d]. There exists a ndO(d/`)-time reduction
from OV(n, d) to dO(d/`) instances of Hop

(
n, `+ 1,O

(
d log d
`

))
.

3

3.2 Chen’s improved reduction from OV to Hopcroft’s problem

Lijie Chen [Che18] proves the following reduction:

Lemma 3.2 (Lemma 1.17 from [Che18]). Let ` ∈ [1, d]. There is a

O
(
n`O(6log

∗ dd/`) poly(d)
)

-time

reduction from OV(n, d) to `O(6log
∗ dd/`) instances of Hop

(
n, `+ 1,O

(
d
`

log `6log∗ d
))

.

3.3 Williams’ reduction from Hopcroft’s problem to bichromatic
closest pair

Williams [Wil18] also gives the following reduction from Hop to BCP:

Lemma 3.3. There is a

O
(
nd2(D +O(log d))2

)
-time

reduction from Hop(n, d,D) to BCP (n, d2,O(D +O(log d))).

Proof. Let A = {u1, . . . ,un} and B = {v1, . . . , vn} be the two sets of vectors. We construct
new sets

A′ =
{
u′i = vec(uiu

T
i)/ ‖ui‖2

2

∣∣ 1 ≤ i ≤ n
}

and
B′ =

{
v′i = − vec(viv

T
i)/ ‖vi‖2

2

∣∣ 1 ≤ i ≤ n
}

where we regard the matrices as unfolded vectors. Now note that∥∥vec(uiu
T
i)
∥∥2

2
= tr(uiu

T
i uiu

T
i) = tr

(
uTi uiu

T
i ui
)

= ‖ui‖4
2

and most importantly〈
vec(uiu

T
i),− vec(viv

T
i)
〉

= − tr
(
uiu

T
i viv

T
i

)
= −〈ui, vi〉2

which means that

‖u′i − v′i‖
2
2 = 2 +

〈ui, vi〉2

‖ui‖2
2 ‖vi‖

2
2

.

Thus, finding the closest pair in `2 between A′ and B′ and checking if the distance is 2 or
more tells us the solution to Hopcroft’s problem. Note that the resulting dimension is d2 and
we have n vectors in each set.

Now it remains to deal with the bit complexity of the vectors we produce. Note that if
〈ui, vi〉2 6= 0, then 〈ui, vi〉2 ≥ 1, which means that for such pairs we have

‖u′i − v′i‖
2
2 ≥ 2 +

1

d222D+1

4

So now suppose we truncate u′i and v′i to D′ bits after the binary point; then ‖u′i − v′i‖
2
2

changes by at most about d2

22D′
, so we want pretty much

22D′ > d422D

or D′ ≥ D + 4 log d guarantees that the closest pair instance will be able to detect a dot
product of 0.

Finally, we scale up all our points so that they have integer coordinates.
Running time: Observe that to multiply/divide two O(B)-bit numbers naively it takes

O(B2) time; therefore,

• computing all the uiu
T
i and viv

T
i takes O(nd2D2);

• computing all the ‖ui‖2
2 , ‖vi‖2

2 takes O(ndD2);

• performing the normalization takes O(nd2(D +O(log d))2);

• scaling up the vectors to Z takes O(nd2D)

So overall the running time is O(nd2(D +O(log d))2).

4 The hardness of computing the Discrete Gauss Trans-

form

In this section we give our main results for the inapproximability of the Gauss transform
assuming the orthogonal vectors conjecture.

4.1 From bichromatic closest pair to approximate Gauss trans-
form

We start with a reduction from the bichromatic closest pair problem to the approximate
Gauss transform that will be used in all our results:

Lemma 4.1. There is a O
(
ndD log log n+ d2D log n

)
-time reduction from an instance of

BCP(n, d,D) to an instance of GT
(
n, d, 1

O(nO(d2D))

)
.

Proof. If A and B are the two sets of vectors for the closest pair instance, we run our approxi-
mate Gauss transform algorithm on λ-scaled versions A′,B′ of these sets with approximation
ε for λ, ε to be chosen later.

Let d1 be the closest distance between A and B, and d2 the second-closest. Note that
d2

2 ≥ d2
1 + 1 as we are working over Z. Now, for any u∗ ∈ A such that u∗ realizes the shortest

distance with some vector in B, we have

F (u∗) ≥ 1

n
e−λ

2d21

5

and for any u that doesn’t, we have

F (u) ≤ e−λ
2d22 .

Our strategy now is to choose λ so that F (u∗) − ε > F (u) + ε for any u ∈ A which
doesn’t realize the shortest distance to B. Note that this will ensure that when we run the
approximate Gauss transform and find the smallest F̂ (u∗) among all u∗ ∈ A, it will be for
a u∗ which realizes the shortest distance to B. Then, for such a u∗, we just enumerate over
v ∈ B and find the shortest distance; this will be the solution to the bichromatic closest pair
instance.

So, we want to have

e−λ
2d21 − ne−λ2d22 ≥ 2nε

Choosing λ = dc
√

log ne for c ≥ 2, we have for n ≥ 2 that

e−λ
2d21 − ne−λ2d22 ≥ e−λ

2d21

(
1− 1

nc−1

)
= e−c

2d21 logn

(
1− 1

nc−1

)
≥ 1

2

1

nc
2d21

.

Since d2
1 = O(d2D) and d2D ≥ 1, it suffices to choose ε = O(1

nO(d2D)
). This finishes the proof.

Running time: We just need to scale the sets A and B by the integer dc
√

log ne which
has O(log log n) bits, so the scaling takes O(ndD log log n) time, and we need to write down
ε, which takes O(d2D log n) time.

4.2 Reduction from OV to Gauss Transform in log n Dimensions

For instances of the Gauss transform where d = c log n, we can give a simple reduction
from the bichromatic version of the orthogonal vector conjecture to the approximate Gauss
transform problem. Note that in this regime the simple exact algorithm that checks all Θ(n2)
pairs beats the FGT algorithm.

The idea is to reduce from OV to BCP directly, without passing through Hop, which
allows us to avoid the more complex reductions by Williams, and also results in a better
dependence on the dimension. Namely, we can avoid the squaring of the dimension from
Williams’ reduction from Hop to BCP.

Lemma 4.2. There is an Õ(n)-time reduction from an instance of OV(n, c log n) to an
instance of GT(n, 3d, ε) where

log(1/ε) = O(log2 n).

6

Proof. Given the two sets of n vectors A = {u1, . . . ,un} ⊆ {0, 1}d and B = {v1, . . . , vn} ⊆
{0, 1}d in the OV instance, we construct new sets A′,B′ ⊆ {0, 1}3d such that for each u ∈ A
and v ∈ B we include u′ in A′ and v′ in B′, where

u′ = [u1 · · · ud 1− u1 · · · 1− ud 0 · · · 0]
v′ = [−v1 · · · −vd 0 · · · 0 1− v1 · · · 1− vd]

Note that 〈u′,u′〉 = 〈v′, v′〉 = d and 〈u′, v′〉 = −〈u, v〉 by construction. Therefore ‖u′ − v′‖2 =
2d+〈u, v〉. Moreover, 〈u, v〉 ≥ 0 for all u, v since they are in {0, 1}d. This gives us a reduction
from OV(n, d) to BCP(n, 3d,O(1)), since a dot product of zero between some u ∈ A and
v ∈ B is equivalent to to the shortest distance between u′ ∈ A′ and v′ ∈ B′ being 2d. This
reduction runs in O(nd) = Õ(n)-time.

Now we can apply this reduction with d = c log n, and compose it with our reduction
from BCP(n, 3d,O(1)) to GT(n, 3d, 1

nO(logn)), which will work in time

O(nd log log n+ d log n) = O(n log n log log n+ log2 n) = Õ(n)

as we wanted to show, and moreover we have log(1/ε) = O(d log n) = O(log2 n).

In particular, for this lemma we get our first hardness result for the Gauss transform as
a direct corollary:

Corollary 4.3. Assuming the OV conjecture, for any η, δ > 0 and d ≥ c log n, there is no
algorithm for GT(n, d, ε) that runs in time

O
(
n2−δ log(1/ε)d

1−η
)

Proof. Assuming such an algorithm existed, applying the above reduction we would get an
O(n2−δ′)-time algorithm for OV(n, d′) for some 0 < δ′ < δ with d′ ≥ c log n/3, refuting the
OV conjecture.

4.3 Using Williams’ reduction to get a better lower bound

In this subsection, we show how we can use Williams’ reduction to show a hardness result
for GT which has worse dependence on the degree of log(1/ε), but applies to the more
interesting range of dimensions (ω((log log n)2), o(log n))

Lemma 4.4. Let ` ∈ [1, d]. Then there is a

ndO(d/`) + n(`+ 1)2O

(
d2 log2 d

`2

)
dO(d/`) + dO(d/`) ·O

(
n(`+ 1)2 log log n+ (`+ 1)22O(d log d/`) log n

)
time reduction from OV(n, d) to dO(d/`) instances of GT(n, (`+ 1)2, ε) where

ε = O
(
n−(`+1)22O(d log d/`)

)
7

Proof. This follows by combining the reduction from OV to Hop in lemma 3.1 with the
reduction from Hop to BCP in lemma 3.3 and the reduction from BCP to GT in lemma
4.1.

In particular, we have the following corollary:

Corollary 4.5. Assuming the OV conjecture, there is no algorithm for GT(n, d′, ε) in

O(n2−δ (log 1
ε

)d′1/2−η
) time for any δ, η > 0 and d′ = (log log n)ω(1) ∩O(log n).

Proof. Assume the contrary. In the reduction from OV to GT, choose d = c log n and
(`+ 1)2 = d′ so that ` = Ω((log log n)ω(1)) ∩O(

√
log n); then note that(

log
1

ε

)`1−η
= (`+ 1)O(`1−η)2O(d`−η log d) = no(1)nO(`−η log logn) = no(1)

by the choice of the lower bound of `.
Running time: For this choice of parameters, the total running time of our reduction is

n1+o(1). Indeed, one sees that dO(d/`) = (c log n)c logn/` = (c log n)o(c logn/ log logn) which is no(1),
and it’s easy to see that all the other terms are no(1) too.

Applying our supposed O(n2−δ (log 1
ε

)d′1/2−η
) approximate Gauss transform algorithm to

this gives us a n2−δno(1) algorithm for the OV instance, which contradicts the OV conjecture.

4.4 Improved bichromatic closest pair hardness and Gauss trans-
form implications

In this section, we show that combining the improved reduction by Chen [Che18] from OV to
Hop with our reductions gives a lower bound for GT for an even better range of dimensions.
Firstly, by combining Chen’s reduction with our above reductions we obtain the following:

Lemma 4.6. There is a

O
(
n`O(6log

∗ dd/`) poly(d)
)

+ `O(6log
∗ dd/`)O

(
n(`+ 1)2

(
d

`
log ` · 6log ∗d

)2
)

+ `O(6log
∗ dd/`)O

(
n(`+ 1)2 log log n+ `O(6log

∗ dd/`)
)

time reduction from OV(n, d) to `O(6log
∗ dd/`) instances of GT(n, (`+ 1)2, ε) where

ε = n−(`+1)22
O(d` log `·6log

∗ d+log `)
= n−(`+1)22

O(d` log `·6log
∗ d)

.

8

Proof. Follows by composing Chen’s reduction from OV to Hop in lemma 3.2 with the
reduction from Hop to BCP in lemma 3.3 and the reduction from BCP to GT in lemma
4.1.

Using this reduction, we get a lower bound for GT in an improved range of dimensions:

Corollary 4.7. Assuming the OV conjecture, there is no algorithm for GT(n, d′, ε) in

O(n2−δ (log 1
ε

)d′1/2−η
) time for any δ, η > 0 and d′ = 6ω(log∗ n) ∩ o(log n).

Proof. We apply Lemma 4.6 with d′ = (` + 1)2. We want to get a lower bound for the
running time of an algorithm for GT(n, d′, ε) of the form n2−δ log

(
1
ε

)m
. The idea is to apply

our reduction with d = c log n and an m = `1−δ (where δ > 0) chosen so that

log

(
1

ε

)m
= no(1)

For our specified range of d′ and therefore `. From our reduction with d = c log n, we have

log
1

ε
= (`+ 1)2 2O(logn

`
log `·6log∗ logn) log n

and we want this to the m-th power to be no(1), for which it suffices that each term in the
product raised to m be no(1). We see that to have

(log n)m = no(1)

we need m = o
(

logn
log logn

)
, which is true if d′ = (`+ 1)2 = o(log n). For the (`+ 1)2 term it is

easy to see that for our allowed values of `:

m log (`+ 1)

log n
=
`1−δ log (`+ 1)

log n
= o(1)

But the middle term is most troublesome. Since we choose m = `1−δ,

2(logn
`

log `·6log∗ logn)
m

= n`
−δ log `·6log∗ logn

Which is no(1) if ` ≥ 6ω(log∗ n) which also implies d′ ≥ 6ω(log∗ n). This means that, for example,
the lower bound works for dimensions d′ ≥ log · · · log n, for any finite number of logs.

Running time: For our choices of ` ≥ 6ω(log∗ n), `O(6log
∗ dd/`) = n6log

∗ n log `/` = no(1), and it
is easy to see that the other terms are no(1) too, showing that the reduction takes O(n2−ξ)-
time in total for some ξ > 0

9

4.5 Barriers to Improving the Lower Bound

As we can see from the previous sections, the quality of dimension reduction from OV to
Hop determine the lower range of allowed d′ in our lower bounds for the Gauss transform.
Although 6ω(log∗ n) is already very small, it is conjectured in [Che18] that this can be improved
to ω(1), which would imply that our reduction will work for d ≥ ω(1) dimensions.

In our lower bounds for small dimensions, the exponent on log(1/ε) is d′1/2−η, and this
comes from the reduction from Hop(n, d,D) to BCP (n, d2,O(D)) in lemma 3.3. If we have
a reduction to BCP (n,O(d),O(D)) instead, then we can get a tight exponent of d′1−η. One
way to get such a reduction is to solve the following problem:

Problem 4.8. Given two sets of n vectors each, A,B ⊂ Zd, can we find a pair of mappings
f , g : Zd → ZO(d), so that the norms of f(u) are the same for all u ∈ A, the norms of
all g(v) are the same for all v ∈ B, and moreover maxu∈A,v∈B 〈f(u), g(v)〉 is achieved iff
〈u, v〉 = 0? The mappings f , g should also not increase the bit-complexity of u, v by more
than a polynomial factor.

The reduction in lemma 3.3 can be seen as using the maps f , g : Zd → Zd2 , where
f(x) = xxT/‖x‖2 and g(x) = −xxT/‖x‖2. While we have spent a long time unsuccessfully
trying to improve this reduction, it is unclear to us whether this is possible, or if there is a
fundamental barrier preventing us from improving it.

In particular, if we look for a reduction with the property that 〈f(u), g(v)〉 ≤ 0 with
equality iff 〈u, v〉 = 0 (which is the case for the reduction in lemma 3.3), one can show that
in such a reduction the functions f and g cannot depend on their inputs coordinate-wise, i.e.
they cannot simply map each coordinate of u to a number of coordinates of f(u) without
looking at the other coordinates of u. This gives some evidence that we may need to look
at all

(
d
2

)
combinations of coordinates (and in fact, f(u) and g(v) from lemma 3.3 do have

a coordinate for each pair of coordinates of u and v). However, it does not rule out the
existence of a smarter reduction.

5 Algorithms for the Gauss Transform

In this section we discuss different algorithms for computing the Gauss Transform. We are
presenting three algorithms, each one corresponding to one parameter regime, depending on
the desired runtime dependence on the approximation parameter ε and the dimension d. In
Section 5.1, we describe the naive, exact algorithm, that however is quadratic in the number
of points. In Section 5.2, we present the Fast Gauss Transform, which has a linear dependence
on n, and works well for very low dimensions and good approximation guarantees. Finally,
by using Random Fourier Features, we show a simple way to get an algorithm that is linear
in the number of points and the dimension, albeit with a polynomial dependence on the
error.

10

5.1 Naive algorithm

Naively, one can compute the Gauss Transform by iterating over all query points, and eval-
uating the Gaussian kernel in linear time. This can be done by computing the distance
between any two points. The total runtime of this algorithm is O(n2d), where d comes from
the time needed to compute the distance between two points.

Although trivial, any exact algorithm that has subquadratic dependence on n and polyno-
mial dependence in d would refute SETH, as we have seen in the previous hardness results.

5.2 Fast Gauss Transform

In this section we will outline the Fast Gauss Transform [GS91]. The intuition behind the
algorithm is that the Gaussian kernel decays exponentially in the distance squared, and so
if one discretizes the space by subdividing into boxes, the value of a query point will only
depend on points that are in boxes close to the query point. Furthermore, one does not need
to evaluate the kernel between the query point and every point in a box: by computing
a Taylor approximation around the center of the box, one only needs to evaluate just one
polynomial for each box B.

More specifically, for any t, s, sB ∈ Rd where sB is the center of box B, the Taylor expan-
sion of e−||t−s||

2
2 for some s ∈ B around the center sB is

e−||t−s||
2
2 =

∑
α1,...,αd≥0

(t− sB)α1+···+αd

α1! . . . αd!
hα(s− sB)

where

hα(t) = (−1)α1+···+αd ∂
α1

∂tα1
1

. . .
∂αd

∂tαdd
e−t

2
1−···−t2d

We now sum these Taylor series over all s ∈ B and switch the order of summation to
obtain a single Hermite expansion

G(t) =
∑

α1,...,αd≥0

Aαhα(t− sB)

where

Aα =
1

α1! . . . αn!

∑
s∈B

1

n
(s1 − sB,1)α1 . . . (sd − sB,d)

αd

Now we truncate this series expansion to include only those monomials where all αi are ≤ p.
By using Cramer’s inequality, i.e. the fact that

1

α!
|hα(t)| ≤ Ke−(t21+···+t2d)/22(a1+···+ad)/2 1√

a1! . . . ad!

where K < (1.09)d, the error due to this truncation is at most

p−Ω(pd)rO(pd)

11

where r is the side length of the box B. Setting r = 1
2

and p = O(log 1
ε
) we get that the error

is at most ε.
Given any two points p, q with ||p− q||∞ ≥ Ω(log 1

ε
), note that

e−||p−q||
2
2 ≤ e−||p−q||

2
∞ ≤ εΩ(1)

and so we only need to care about boxes within an `∞ distance of O
(
log 1

ε

)
. The number of

such boxes is
(
log 1

ε

)O(d)
.

From the above, we deduce that both the time needed to compute the polynomials for all

boxes and the time to evaluate the Gaussian kernel at all query points is n
(
log 1

ε

)O(d)
. This

gives the total runtime of the algorithm.

5.3 Random Fourier Features

Another approach for approximately computing the Fast Gauss Transform is by using Ran-
dom Fourier Features, as introduced by [RR08]. Given a set S ⊆ [−M ,M]d and an error
parameter ε > 0, there exists a mapping f : Rd → RD with D = O(d

ε2
log M

ε
), such that

∀x, y ∈ S e−||x−y||
2
2 − ε ≤ 〈f(x), f(y)〉 ≤ e−||x−y||

2
2 + ε

Furthermore, such a mapping can be computed with high probability and f can be applied
in O(D) time. Now this implies that also for all x

1

n

∑
i∈[n]

e−||x−yi||
2
2 − ε ≤ 1

n

∑
i∈[n]

〈x, yi〉 ≤
1

n

∑
i∈[n]

e−||x−yi||
2
2 + ε

however, by linearity, the middle quantity is also equal to

〈x,
1

n

∑
i∈[n]

yi〉

so if we just precompute Y = 1
n

∑
i∈[n]

yi, then 1
n

∑
i∈[n]

e−||x−yi||
2
2 can be ε-approximated in O(D)

time.
The time to compute the mappings of all our points is O(nD), and then the time to

compute the inner products is also O(nD), so the final runtime is

O

(
nd

ε2
log

M

ε

)

12

References

[Che18] Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum
inner product. arXiv preprint arXiv:1802.02325, 2018.

[GS91] Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on
Scientific and Statistical Computing, 12(1):79–94, 1991.

[GW13] Michael Griebel and Daniel Wissel. Fast approximation of the discrete gauss
transform in higher dimensions. Journal of Scientific Computing, 55(1):149–172,
2013.

[RR08] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-
chines. In Advances in neural information processing systems, pages 1177–1184,
2008.

[RYDG05] Vikas Chandrakant Raykar, Changjaing Yang, Ramani Duraiswami, and Nail
Gumerov. Fast computation of sums of gaussians in high dimensions. Technical
report, 2005.

[TW09] Johannes Tausch and Alexander Weckiewicz. Multidimensional fast gauss
transforms by chebyshev expansions. SIAM Journal on Scientific Computing,
31(5):3547–3565, 2009.

[Wil18] Ryan Williams. On the difference between closest, furthest, and orthogonal pairs:
Nearly-linear vs barely-subquadratic complexity. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1207–1215.
SIAM, 2018.

13

	Introduction
	Preliminaries
	Reductions between monochromatic and bichromatic versions of OV

	Previous work
	Williams's reduction from OV to Hopcroft's problem
	Chen's improved reduction from OV to Hopcroft's problem
	Williams' reduction from Hopcroft's problem to bichromatic closest pair

	The hardness of computing the Discrete Gauss Transform
	From bichromatic closest pair to approximate Gauss transform
	Reduction from OV to Gauss Transform in logn Dimensions
	Using Williams' reduction to get a better lower bound
	Improved bichromatic closest pair hardness and Gauss transform implications
	Barriers to Improving the Lower Bound

	Algorithms for the Gauss Transform
	Naive algorithm
	Fast Gauss Transform
	Random Fourier Features

